Unsuperised classification by soft computing techniques: algorithms of fuzzy -means clustering

نویسنده

  • Sadaaki Miyamoto
چکیده

We overview methods of fuzzy -means clustering as a representative techniques of unsupervised classification by soft computing. The basic framework is the alternate optimization algorithm originally proposed by Dunn and Bezdek is reviewed and two more objective functions are introduced. An additional variable of controlling volume size is included as an extension. Moreover a method of the kernel trick for obtaining nonlinear cluster boundaries is moreover considered and a simple numerical example is shown.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proposing a Novel Cost Sensitive Imbalanced Classification Method based on Hybrid of New Fuzzy Cost Assigning Approaches, Fuzzy Clustering and Evolutionary Algorithms

In this paper, a new hybrid methodology is introduced to design a cost-sensitive fuzzy rule-based classification system. A novel cost metric is proposed based on the combination of three different concepts: Entropy, Gini index and DKM criterion. In order to calculate the effective cost of patterns, a hybrid of fuzzy c-means clustering and particle swarm optimization algorithm is utilized. This ...

متن کامل

Academic performance evaluation using soft computing techniques

This article presents a study of academic performance evaluation using soft computing techniques inspired by the successful application of K-means, fuzzy C-means (FCM), subtractive clustering (SC), hybrid subtractive clustering-fuzzy C-means (SC-FCM) and hybrid subtractive clustering-adaptive neuro fuzzy inference system (SC-ANFIS) methods for solving academic performance evaluation problems. M...

متن کامل

Utilization of Soft Computing for Evaluating the Performance of Stone Sawing Machines, Iranian Quarries

The escalating construction industry has led to a drastic increase in the dimension stone demand in the construction, mining and industry sectors. Assessment and investigation of mining projects and stone processing plants such as sawing machines is necessary to manage and respond to the sawing performance; hence, the soft computing techniques were considered as a challenging task due to stocha...

متن کامل

INTERVAL ANALYSIS-BASED HYPERBOX GRANULAR COMPUTING CLASSIFICATION ALGORITHMS

Representation of a granule, relation and operation between two granules are mainly researched in granular computing. Hyperbox granular computing classification algorithms (HBGrC) are proposed based on interval analysis. Firstly, a granule is represented as the hyperbox which is the Cartesian product of $N$ intervals for classification in the $N$-dimensional space. Secondly, the relation betwee...

متن کامل

A study of various Fuzzy Clustering Algorithms

In data mining clustering techniques are used to group together the objects showing similar characteristics within the same cluster and the objects demonstrating different characteristics are grouped into clusters. Clustering approaches can be classified into two categories namelyHard clustering and Soft clustering. In hard clustering data is divided into clusters in such a way that each data i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006